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Opportunities for AI in Plant 
Biology and Crop Research

Richard J Morris
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–John von Neumann

“If  I can’t compute it, I 
don’t understand it.” 
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Mechanistic models build 
on previous knowledge 
and have meaningful 
parameters
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spatial patterning of the activation of ROS-responsive
promoters (Miller et al., 2009). However, we have now
been able to show that an extracellular ROS increase
accompanied the Ca2+ wave moving at approximately
400 mm s21, suggesting a propagating ROS wave. This
ROS wave is dependent on AtRBOHD and TPC1,
consistent with the ROS-assisted Ca2+ wave model
where ROS trigger Ca2+ increases that then propagate
and trigger further distal ROS responses. It is important
to note here that although this wave of ROS increase
appears to be moving at approximately the same ve-
locity as the Ca2+ increase, this measurement of rate
must be interpreted with caution. The OxyBurst Green-
BSA sensor is designed to be excluded from the cell
wall. Thus, this imaging technique relies on the diffu-
sion of ROS from the surface of the root to the medium
and so likely incorporates a delay in appearance as the
ROS move through the apoplast and accumulate in the
medium. This caveat is especially relevant as the NaCl-
triggered Ca2+ wave, and by implication the ROS-
related events associated with it, are initiated at the
cortex and endodermis, so ROS would need to transit
the epidermal apoplast to begin to leave the root.
Therefore, although we can say that an extracellular
ROS increase accompanies the Ca2+ wave, defining
whether the ROS appear before or concurrent with the
Ca2+ increases must await the development of im-
proved extracellular ROS imaging technology. How-
ever, the inhibition of the propagation of the Ca2+ wave
by treatment with DPI or ascorbate (Fig. 3) and in the
atrbohDmutant (Fig. 4) suggests that the Ca2+ wave is at
least dependent on ROS production. The residual wave
transmission seen with DPI could reflect an incomplete
inhibition of RBOH activity by this pharmacological
agent or the action of a parallel, DPI-resistant ROS-
generating mechanism as part of the wave propagation
mechanism.
Our combination of mathematical modeling and ex-

perimental analysis supports the following model for
the propagation of the systemic signal in response to

salt. Locally, the application of salt triggers the move-
ment of ions between various compartments in the cell,
and in particular, the concentration of Ca2+ in the cy-
toplasm increases. This signal leads to the activation of
RBOHD via its EF hand domains and via phosphoryl-
ation by Ca2+-binding kinases (Dubiella et al., 2013). As
illustrated in Figure 6, local production of ROS
by RBOHD is predicted to activate plasma membrane
Ca2+ channels. ROS-sensitive Ca2+ channel activities
have beenmonitored at the electrophysiological level in
Arabidopsis root cells (Foreman et al., 2003; Demidchik
and Maathuis, 2007; Ordoñez et al., 2014), and ROS-
responsive candidates such as the annexins (Richards
et al., 2014) have been identified at the molecular level,
although their possible roles in Ca2+ wave transmission
remain to be explored. This Ca2+ contributes to the ac-
tivation of TPC1, resulting, directly or indirectly, in the
release of more Ca2+ from the vacuole. ROS and Ca2+
diffuse within the apoplast and cytoplasm, respec-
tively, activating neighboring channels until all the in-
volved signaling proteins within a cell have been
activated. The signaling molecules are able to diffuse
between cells, ROS through the apoplast and Ca2+
through the plasmodesmata, where signaling in the next
cell is activated. In the TPC1 overexpressor, the quantity
of TPC1 channels is increased (Peiter et al., 2005),
resulting in more Ca2+ being released and faster activa-
tion of RBOHDs and, therefore, a fasterwave.Within the
tpc1-2 mutant background, RBOHD and the plasma
membrane Ca2+ channel form a linked propagation
system. The observation that high concentrations of as-
corbate can abolish the Ca2+ wave suggests that Ca2+
alone is insufficient to propagate the Ca2+ wave;
therefore, in the rbohD mutant, it is possible that other
sources of ROS act to give rise to the lower velocitywave.

While the modeling work presented here assumes
ROS propagation through the apoplast, we cannot ex-
clude the possibility that Ca2+ diffusing through the
plasmodesmata is responsible for transmitting the sig-
nal between adjacent cells, or indeed that the two

Figure 6. Conceptual model of the propagation of
the salt stress-induced Ca2+/ROS waves. ROS
(green arrows) are produced in RBOHD (green
circles) and diffuse through the apoplast, activat-
ing ROS-sensitive Ca2+ channels in the plasma
membrane (light blue ellipse). These channels
release Ca2+ into the cytosol (blue arrows) that
activate TPC1 proteins (yellow circles), which,
directly or indirectly, mediate Ca2+ release from
the vacuole. Combined, this Ca2+ activates further
RBOHD proteins, giving rise to a self-propagating
ROS/Ca2+ wave. Passage between cells may be
mediated by either diffusion of ROS through the
apoplast or Ca2+ through the plasmodesmata.
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Fluid dynamics 
simulations of fluid flow 
in the xylem

Fire-diffuse-fire 
modelling of spatio-
temporal calcium waves

Finite Element Method 
modelling of guard cell 
dynamics

Evans and Morris (2016) The Plant 
Journal

Blyth and Morris (2019) Frontiers in 
Plant Science

Capoen et al (2011) PNAS

Vaz Martins et al (2016) BMC Systems 
Biology

Evans et al. (2016) Plant Physiology 
Woolfenden et al. (2017) The Plant 
Journal
Carter et al. (2017) Current Biology
Woolfenden et al. (2018) Trends in Plant 
Science

Blyth and Morris (2018) Mathematical 
Modelling in Plant Biology
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Sometimes the 
mathematical 
equations reveal 
astonishing insights 
and precision (and 
accuracy) that go well 
beyond the data they 
were built on
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Sometimes the 
mathematical 
equations reveal 
astonishing insights 
and precision (and 
accuracy) that go well 
beyond the data they 
were built on
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So, what’s all the fuss 
about deep learning?
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https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning
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https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning
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The few 
extra layers 
are game 
changing!
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Deep learning approaches are not restricted 
by the imagination of the modeller but are 

currently difficult to ‘understand’
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Challenges
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What does it mean to ‘understand’ something?

14



2/25/21

8

To ‘understand’ 
often means 
relating it to 

something else
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Even simple systems can show non-intuitive behaviour
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–Richard Feynman

“I think I can safely say that nobody 
really understands quantum 

mechanics.” 
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AI for plant disease detection in wheat

Megan Long

Yellow Rust Yellow RustSeptoria
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From lab to field – getting real world data
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From lab to field – getting real world data
What?

Images of diseased (Septoria, yellow 
rust, brown rust, mildew) and healthy 

wheat leaves

Where?

Multiple sites across the UK, in 
England, Ireland and Scotland.

How?

Predominantly using smartphone 
cameras, some with a digital camera

With all possible conditions

20
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Networks – Pre-trained 

MobileNet (by Google) – Test 
accuracy 91.4%

Pre-trained convolutional base

Extracted features

Predictions

21

Megan’s network performs astonishingly well
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Test the Pathologist

23
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> 2m > 2m
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Megan’s network even outperforms expert crop
pathologists!
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Unravelling the 
control of 

developmental 
transitions in 

Brassicas 
Richard J Morris

Judith Irwin
Rachel Wells

Alex Calderwood

Marc Jones

Jo Hepworth

Lars Ostergaard
John Doonan

Eleri Tudor

Shannon Woodhouse

Kevin Williams

Andrew Lloyd

Catherine Chinoy
Lorelie Bilham

Fiona Corke
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Using modelling 
and machine 
learning to 

unravel 
developmental 
transitions in 

Brassica

Calderwood et al. (2021) QPB (accepted)
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Gene regulatory 
networks and deep 
learning networks 
are not dissimilar

29

We can train gene 
regulatory networks 
for flowering time to 
predict leaf numbers

Supplemental Data. Jaeger et al. (2013). Plant Cell 10.1105/tpc.113.109355
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Supplemental Figure 5. Fit between experimental and modelled leaf numbers for wild type and
single mutants. We have assumed that the leaf number counts follow a Poisson distribution and have

depicted the standard deviation for each data point with error bars. Accurate predictions fall on the

diagonal shown as a dashed line. The mean leaf number deviation for the training set is shown as a

shorter dashed line above and below the diagonal.Jaeger et al. (2013) The Plant Cell
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We can train gene 
regulatory networks 
for flowering time to 
predict leaf numbers

Supplemental Data. Jaeger et al. (2013). Plant Cell 10.1105/tpc.113.109355
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Supplemental Figure 6. Fit between experimental and modelled leaf numbers for double and
triple mutants. We have assumed that the leaf number counts follow a Poisson distribution and have

depicted the standard deviation for each data point with error bars. Accurate predictions fall on the

diagonal shown as a dashed line. The mean leaf number deviation for the training set is shown as a

shorter dashed line above and below the diagonal.
Jaeger et al. (2013) The Plant Cell
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Self-
organizing 

maps reveal 
patterns in 
transcript 
dynamics

Jones et al. (2021) In preparation
Jones et al. (2018) The Plant Journal Jones et al. (2020) BMC Plant Biology

Marc Jones
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Convolutional 
Neural 

Networks can 
predict 

expression in 
Brassica rapa

Daphne Ezer, York

33

Dynamic time 
warping of 

gene 
expression 
reveals key 

differences in 
flowering in 

Brassica rapa

Calderwood et al. (2021) Quantitative Plant Biology
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Gaussian 
Process 
network 
inference 

reveals key 
differences in 
flowering in 

Brassica rapa

Calderwood et al. (2021) biorxiv

Alex Calderwood
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Unsupervised 
learning leads 

to a 
mathematical 

model that 
explains 

phenotypic 
diversity in 

Brassica napus

Calderwood et al. (2021) New Phytologist

Alex Calderwood
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Trans-Learn – Multivariate Gene Patterns

The orange/red clusters found in a heatmap contain subsets of 
genes that collectively possess non-linear joint dependencies with 
the infection status/severity

71x71 gene matrix

Josh Colmer
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From genotype to phenotype and back

38



2/25/21

20

39

Challenges and 
thoughts

Annotated balanced data sets

Easy ways of sharing trained 
networks and retraining them 
(transfer learning)

Better ways of accounting for 
uncertainties in the data

Wishlist for linking 
to mechanistic 
models:

The ability to enforce 
thermodynamically 
consistent models
Better ways of 
extracting information 
from trained networks
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Sometimes our 
understanding of 

the physics is 
outperformed by 

Deep Learning 
approaches
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Thank you!

Anna Backhaus

42


