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il cante compute
don 't undetstand it

—John von Neumann

Mechanistic models build
on previous knowledge

and have meaningful
parameters
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Fluid dynamics Fire-diffuse-fire Finite Element Method
simulations of fluid flow modelling of spatio- modelling of guard cell
in the xylem temporal calcium waves | dynamics
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RBOHD Plasmodesmata ROS
Evans and Morris (2016) The Plant
Journal . | (2016) I Physiol Woolfenden et al. (2017) The Plant
Blyth and Morris (2018) Mathematical vans et al. ( ) Plant Physiology Journal
Modelling in Plant Biology Capoen et al (2011) PNAS Carter et al. (2017) Current Biology
Blyth and Morris (2019) Frontiers in Vaz Martins et al (2016) BMC Systems ~ Woolfenden et al. (2018) Trends in Plant
Plant Science Biology Science
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Sometimes the
mathematical
eguations reveal
astonishing insights
and precision (and

accuracy) that go well
beyond the data they
were builton
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Machine Learning

o s 35 IR

Input Feature extraction Classification Output

Deep Learning
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Input Feature extraction + Classification Output

https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning
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https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning
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* Breaks the 80:20 rule for feature
selection:training

* No longer requires expert domain
knowledge

* Computer scientists are taking over
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Deep learning approaches are not restricted
by the imagination of the modeller but are
currently difficult to ‘understand’
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WHOOP DEE DO, WHAT DOES IT ALL MEAN?
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What does it mean to ‘understand’ something?
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To ‘understand’
often means
relating it to

something else

61,=0 ) 620:0 81y=0 , ’62020-1

Even simple systems can show non-intuitive behaviour
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“I think I can safely say that nobody
really understands quantum
mechanics.”

—Richard Feynman
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Al for plant disease detection in wheat

SEEDS

Grow to expect the best
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From lab to field — getting real world

What?

Images of diseased (Septoria, yellow |
rust, brown rust, mildew) and healthy
wheat leaves
Where?

Multiple sites across the UK, in
England, Ireland and Scotland.

How?

‘ Predominantly using smartphone
7| cameras, some with a digital camera \
With all possible conditions

20
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Networks — Pre-trained

Training and validation accuracy
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Wondy
100

Test the Pathologist
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Megan’s network even outperforms expert crop
pathologists!

N

N
RGN
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Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Network

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

' |Brown rust 103 25 120 8 121 7 121 7 116 12 125 3
Healthy 104 18 98 24 94 28 96 26 117 5 99 23
gMuldew 151 10 152 9 151 10 153 8 152 9 128 33
, ‘Septorla 265 84 273 76 296 53 331 18 266 83 336 13
wvellow rust 215 24 217 22 204 35 167 72 207 32 200 39
Accuracy 83.88% 86.08% 86.68% 86.88% 85.88%
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Alex Calderwood
Andrew Lloyd
Jo Hepworth

Eleri Tudor
Marc Jones

Unrave"ing the .: X3 . 2 Shannon Woodhouse
: e Catherine Chinoy
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Fiona Corke
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Using modelling
and machine
learning to
unravel
developmental
transitions in
Brassica

Calderwood et al. (2021) QPB (accepted)

14



Gene regulatory
networks and deep
learning networks
are not dissimilar

We can train gene
regulatory networks
for flowering time to

predict leaf numbers

2/25/21

modelled leaf numbers

Rosette, single
| Caulline, §ingleI

+
X
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1
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measured leaf numbers

Jaeger et al. (2013) The Plant Cell
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We can train gene
regulatory networks
for flowering time to

predict leaf numbers
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Jaeger et al. (2013) The Plant Cell

Self-
organizing
maps reveal

patterns in
transcript
dynamics

Marc Jones

Tapidor Westar

OSR genes with
Arabidopsis homologues

OSR genes exhibiting
variety-specifc expression
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Jones et al. (2018) The Plant Journal  Jones et al. (2020) BMC Plant Biology
Jones et al. (2021) In preparation
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Convolutional
Neural
Networks can

predict
expression in
Brassica rapa

Daphne Ezer, York
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Dynamic time
warping of
gene
expression

reveals key
differences in
flowering in
Brassica rapa

Alex Calderwood
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Calderwood et al. (2021) Quantitative Plant Biology
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CEIVISENR
Process
network

inference

reveals key
differences in
flowering in
Brassica rapa

Alex Calderwood
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Calderwood et al. (2021) biorxiv
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Unsupervised
learning leads
toa
mathematical
model that

explains
phenotypic
diversity in
Brassica napus
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Calderwood et al. (2021) New Phytologist
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Trans-Learn — Multivariate Gene Patterns

71x71 gene matrix y

mmmn

e mm =
ATIGZ3710 (SESEED
\ Anmmo
el
mm

T s

ATIGIS010

The orange/red clusters found in a heatmap contain subsets of
genes that collectively possess non-linear joint dependencies with
the infection status/severity
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i‘) PHENOMICS
J Centre

The
Alan Turing
Institute

From genotype to phenotype and back
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Annotated balanced data sets

Easy ways of sharing trained
networks and retraining them

Ch d | |e nges an d (transfer learning)
thoughts

Better ways of accounting for
uncertainties in the data

a a a q The ability to enforce
Wishlist for I|nk|ng thermodynamically
consistent models
Better ways of

m Od e | S: extracting information

from trained networks

to mechanistic

40
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Sometimes our
understanding of
the physics is
outperformed by
Deep Learning
approaches
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