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Comparative Network Biology - Vandepoele lab

• Extract biological knowledge from large-scale experimental data sets using data

integration, comparative sequence & expression analysis, and network biology, to improve

our understanding of gene functions and regulation in plants and diatoms.

Plant Gene Regulatory Networks Comparative functional genomics

• PLAZA 4.0: an integrative resource for functional, evolutionary and 
comparative plant genomics. Van Bel et al., 2018, Nucleic Acids Res

• Curse: building expression atlases and co-expression networks 
from public RNA-Seq data. Vaneechoutte D, Vandepoele K. 
Bioinformatics. 2019

• TF2Network: predicting transcription factor regulators and gene 
regulatory networks in Arabidopsis using publicly available binding 
site information. Kulkarni et al., 2018, Nucleic Acids Res

• Enhanced maps of transcription factor binding sites improve 
regulatory networks learned from accessible chromatin data.
Kulkarni et al., Plant Physiol. 2019



Mapping of Gene Regulatory Networks (GRNs)

Mejia-Guerra et al., 2012

Arabidopsis
-1,700-2,500 Transcription Factors
- 180-791 miRNA
- 2,708 expressed lncRNA

49MB non-coding DNA

AtRegNet:
17,224 regulatory interactions



Experimental characterization of transcriptional activity and 
regulatory control

ENCODE

How to integrate the biological knowledge captured by different –omics layers 
to build better networks reporting functional regulatory interactions?



1. TF ChIP-Seq

• in vivo method to measure protein-DNA 
interactions using chromatin immuno-
precipitation

• Different cellular conditions can be profiled

TF ChIP-Seq

Furey et al., 2012

ChIP
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Output ChIP-Seq peak calling procedure displayed in genome browser

Position Weight Matrix 
(PWM)

TF
target gene



2. in vitro TF binding specificities

Wang et al., 2011

Model TF binding site as 
Position Weight Matrix (PWM) 

based on k-mer signals

Protein binding 
microarray

target geneArabidopsis: PWMs for 990 TFs

PWM



3. DNase-seq - Profiling of accesible chromatin

Hesselberth et al, 2009 binding site TF protein

DH footprint

DNase I hypersensitive site
(DHS)

DHS+PWM



➢ Map all known PWMs on the 
promoters of the Arabidopsis query 
gene and its orthologs

➢ Count per PWM position the #species 
that support a TF binding site

➢ Significance estimation (FDR<10%)

Van de Velde et al., Plant Phys 2016 - A Collection of Conserved Non-Coding Sequences to Study Gene Regulation in Flowering Plants.

Conserved PWM4. Detection of conserved TF binding sites using 
phylogenetic footprinting



5-6. Network inference based on expression data

TF
target

Expression-based network inference

GENIE3 - Huynh-Thu et al., 2013

GENIE3

COE TF-target

GENIE3



7. Co-expression + PWM enrichment

• Integrate co-regulatory gene expression data with TF binding sites (PWMs)

PWM enrichment in kNN co-expression cluster
(hypergeometric distribution)

COE+PWM



Benchmarking of different methods to map gene regulatory 
networks

Gold standard: 5.7k interactions covering 522 TFs (AtRegNet)

Test set: 20% of gold standard (80% used for training)



Benchmarking of different methods to map gene regulatory 
networks

Jan Van de Velde

Gold standard: 5.7k interactions covering 522 TFs (AtRegNet+literature)

Test set: 20% of gold standard (80% used for training later)



Supervised learning: a network-based approach for large-
scale functional data integration 

Marbach et al., Genome Research 2012

Gradient Boosting Machine
• 1000 trees (shrinkage of 0.01, interaction depth 3, 10-fold CV training)
• 80% training data with True:False sampling ratio of 3:1
• 7 input networks

Conserved Motifs of TFs ChIP Binding of TFs TF Motif Occurence in 

Open Chromatin
TF-Gene Co-Expression

targets

1800 TFs

Supervised Network

Known Interactions

Training Data

Test Data
Cross-validation

Input Features

Classifier

Target geneTF gene

Open Chromatin

COE TF-target GENIE3 COE+PWMDHS+PWM Conserved PWMPWM

Supervised Learning max F1: 1793k interactions – 1766 TFs

Gold standard

Max F1 network - Test set
Recall: 46%
Precision: 71%
F1-measure: 57%

ChIP



Performance supervised learning network (iGRN)

Supervised Learning max F1



Different support of input networks for iGRN

Supervised Learning max F1



iGRN captures functional TF – target gene interactions

-- overlap target genes not significant (p-value hypergeometric distribution > 0.05)

--

34/40 TFs have significant overlap between predicted target genes and DE 
genes after TF perturbation

-- --

--

--
--



iGRN-based functional annotation of TFs

Recovery of experimental Gene Ontology Biological 
Process annotations for TFs with known function

TF
TF function

Target genes

• Recovery of known experimentally-
supported functions  for >600 TFs

• Novel functional predictions for 268 
unknown TFs

• Highly complementary with AraNet v2

iGRN
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Oxidative stress signaling

In house dataset of ROS marker genes

Willems et al., 2016, Plant PhysiologyVan Breusegem lab - VIB



Prediction and evaluation of novel oxidative stress TFs
(“ROS-TFs”)

Target gene enrichment:
• ROS wheel
• GO-BP ‘response to oxidative stress’

Novel TF 
functions
(e.g. oxidative stress 

responses)

TF
Rank ID Gene name q-val

enrichme
nt Phenotype

1 AT5G63790 ANAC102,NAC102 1,84E-35 22,74 Oxidative (our data)

2 AT3G55980 ATSZF1,SZF1 5,10E-26 32,71 Salt

3 AT2G37430 ZAT11 2,81E-25 14,41 Oxidative (paraquat, Ni)

4 AT2G40140 ATSZF2,CZF1 6,41E-25 17,45 Salt

5 AT5G59820 AtZAT12,RHL41,ZAT12 8,70E-25 18,64 Oxidative and abiotic

6 AT5G24110 ATWRKY30,WRKY30 1,42E-24 6,82 oxidative, salt (at early developmental stage)

7 AT2G38470 ATWRKY33,WRKY33 5,03E-24 6,85 Pathogen, salt, heat stress

8 AT2G46400 ATWRKY46,WRKY46 9,78E-24 5,79 Osmotic/salt

9 AT4G17500 ATERF-1,ERF-1 2,57E-23 9,42 Biotic …

10 AT1G28370 ATERF11,ERF11 3,10E-23 6,75 Osmotic, ET signaling

11 AT4G18880 AT-HSFA4A,HSF21 5,09E-23 6,39 oxidative, salt

12 AT2G23320 AtWRKY15,WRKY15 7,46E-23 6,31 Oxidative, salt

13 AT5G04340 C2H2,CZF2,ZAT6 7,52E-23 14,09
Cadmium, salt, osmotic stress, P deficiency, 
pathogen, drought, cold

14 AT1G80840 ATWRKY40,WRKY40 8,93E-23 6,51 Biotic, MRS

15 AT3G23250 ATMYB15,ATY19 1,86E-22 5,71 Drought, cold

16 AT1G27730 STZ,ZAT10 4,90E-22 9,99 Oxidative transcripts, abiotic, ….

17 AT5G49520 ATWRKY48,WRKY48 5,36E-22 11,26 Biotic

18 AT5G13080 ATWRKY75,WRKY75 1,40E-21 5,81 Phosphate starvation, biotic

19 AT4G17230 SCL13 3,76E-21 16,60 Phytochrome dependent light signaling

20 AT5G59450 AT5G59450 5,14E-21 19,95 cell division

21 AT1G42990 ATBZIP60,BZIP60 1,36E-20 5,46 ER, unfolded protein

22 AT1G18570 AtMYB51,BW51A 1,84E-20 5,82 glucosinolate biosynthesis

23 AT4G23810 ATWRKY53,WRKY53 6,64E-20 7,56
leaf senescence and regulation of oxidative 
stress genes

24 AT1G66550 ATWRKY67,WRKY67 3,25E-19 8,88 None; no lines available

25 AT3G23220 ESE1 3,54E-19 7,50 Salt, ET signaling

26 AT5G47230 ATERF5,ATERF-5 3,60E-19 6,00 Biotic

27 AT3G54810 BME3,BME3-ZF,GATA8 2,01E-18 14,92 Germination, salt/drought

28 AT5G47220 ATERF2,ATERF-2,ERF2 4,16E-18 5,57 Biotic

29 AT2G40740 ATWRKY55,WRKY55 6,69E-18 5,70 None

30 AT4G36990 ATHSF4,AT-HSFB1,HSF4 1,94E-17 5,98
similar to heat shock factor, no known 
phenotype

31 AT2G30250 ATWRKY25,WRKY25 1,59E-16 4,81 Biotic, salt

32 AT4G31550 ATWRKY11,WRKY11 2,03E-16 5,33 Biotic

33 AT5G01380 GT3a 2,15E-16 4,93 None

34 AT5G22570 ATWRKY38,WRKY38 2,19E-16 6,01 Biotic

35 AT3G23240 ATERF1,ERF1 2,36E-15 4,16 ET

36 AT4G17490 ATERF6,ERF6,ERF-6-6 3,13E-15 5,26 Oxidative

37 AT4G22950 AGL19,GL19 3,37E-15 15,26 flowering

38 AT3G10500 ANAC053,NAC053,NTL4 3,63E-15 5,02 Oxidative/ROS

39 AT3G49530 ANAC062,NAC062,NTL6 1,76E-14 7,24 ER, unfolded protein

40 AT5G62020 AT-HSFB2A,HSF6,HSFB2A 5,87E-14 5,87

41 AT1G22070 TGA3 6,60E-14 5,33 biotic

42 AT1G67970 AT-HSFA8,HSFA8 7,97E-14 11,40 redox dependent nucleus translocation…

Unknown or no 

stress-related 

function

Oxidative stress 

function

Other (a/biotic) 

stress function

Ranking based on ROS wheel target 

genes enrichment (n=124 TFs)



Functional validation of the predicted ROS-TFs

Inge De Clercq



13/32 regulators were 
validated for a function 
in ROS responses by 
phenotyping

Rank – TF - perturbation



Phenotypes for predicted ROS-TFs

iGRN identified novel ROS TFs from the GRAS, BES1 and GATA families 



Expression patterns for novel ROS-TFs

Responsiveness to a wide range of 
oxidative stress conditions?

• 14/17 known ROS TFs

• 6/13 novel ROS TFs 

Many novel ROS TFs would not have been 
predicted solely relying on differential 
expression at the whole plant or organ 
level!



Conclusions

Jan Van de Velde Inge De Clercq

➢ Different regulatory –omics data types as well as advanced 
computational integration methods contribute significantly to the 
improved delineation of high-quality gene regulatory networks

➢ TF binding site-based as well as expression-based regulatory 
networks offer a complementary view on functional gene 
regulatory interactions

➢ Gene regulatory networks obtained by supervised learning are a 
starting point for 

➢ the systematic functional/regulatory annotation of all Arabidopsis 
genes

➢ new biological discoveries

Li Liu, Dries Vaneechoutte
Robin Pottie, Xiaopeng Liu, Frank Van Breusegem



Further reading

Curse: Building expression atlases and co-expression networks from public 
RNA-Seq data. Vaneechoutte and Vandepoele (2019) Bioinformatics

TF2Network: predicting transcription factor regulators and gene regulatory 
networks in Arabidopsis using publicly available binding site information 
Kulkarni, Vaneechoutte, Van de Velde and Vandepoele (2018). Nucleic Acids 
Research


